

Computer Communications for Ethernet Global Data.doc 1

Computer Communications for Ethernet Global Data – CommEGD

GE Fanuc Automation and GE Drive Systems developed an Ethernet Global Data, or EGD, exchange
for PLC and computer data in 1998. EGD uses UDP or datagram messages for fast transfer of up to
1400 bytes of data from a producer to one or more consumers. UDP messages have much less
overhead that the streaming TCP connectigefcommqon used for programming or CommReq’s over
SRTP Ethernet. Like Genius® broadcast input or directed control messages, UDP messages are not
acknowledged. They can be sent at short intervals. Chances of one or more messages being dropped
are small on a local area network.

The IC697CMM742 modules configured with Control and IC693CPU364 and IC200CPUE05
configured with VersaPro can send and receive EGD, but few software vendors support EGD yet. I am
developing an Ethernet gateway for Genius networks so any computer or PC control system can read
inputs or control outputs using EGD, MODBUS/UDP and serial RTU. There are several sources of
RTU master programs, including free source code on our web site. The gateway requires EGD, so this
web application note provides source code for an EGD server for GENIGate modules as well as GE
Fanuc PLC’s and I/O.

CommEGD is provided as sample source code for third party developers to integrate GE Fanuc EGD
into their software products. It has the following features:

• Reads (consumes) or writes (produces) EGD to any device (Data port only, not Drives Control
port)

• Simple text GEFComm.ini file defines all EGD exchanges and timing. Edit with LMSetup
program

• Dynamically configures any number of devices or EGD exchanges of up to 1400 bytes each

• Software creates separate threads to handle Ethernet UPD messages, (future TCP and serial
data)

• Internal computer reference table created to store I, Q, AI, AQ, M and R data received or to be
sent

• Applications call gefRead/WriteComputerMemory to access internal reference tables with
overrides

• Routines pack bit data on write and unpack bits to 16-bit integer on read for simple
VisualBASIC use

• In the Open Source code tradition, source code is provided with a royalty free right to copy
and use

Note all current source code is provided, but the multithreaded HostEGD using the routines is not
complete . The two EGD performance testing programs, ReflectEGD and StressEGD, are complete
and include source code. Check the GE Fanuc PLC Tech Support web site for updates.

EGD Data Message Format

The EGD specification covers two types of UDP datagrams: Data messages sent to the Data port
0x4746 and Control messages sent to the Control port. Control messages provide a reply message to
acknowledge every request message. GE Drives systems support Control messages, but they will not
be discussed here as EGD Control messages have currently not been implemented in any GE Fanuc
products.

The following standard C code defines the EGD Data message format:
#pragma pack(2) /* change default packing from 4 o r 8 bytes to 2 */
#define GEF_EGD_UDP_DATA_PORT 0x4746 /* Letters GF are used as port for
EGD Data messages */
typedef struct {

Computer Communications for Ethernet Global Data.doc 2

 unsigned short PDUTypeVersion; /* Type=13 (0Dh) i n low byte,
version=1 in hi */
 unsigned short RequestID; /* incremented every ti me
data produced */
 unsigned long ProducerID; /* The TCP/IP address o f
device sending EGD */
 unsigned long ExchangeID; /* A unique Producer nu mber
identifying the data */
 unsigned long TimeStampSec; /* Timestamp seconds since 1-
Jan-1970 */
 unsigned long TimeStampNanoSec; /* and number of n anoseconds
in current second */
 unsigned long Status; /* In low word, upper word
reserved and set to 0 */
 unsigned long ConfigSignature; /* In low word, upp er word
reserved and set to 0*/
 unsigned long Reserved; /* word set to 0 */
 unsigned char ProductionData[1400]; /* PLC or I/O data to be sent
as EGD */
} GEF_EGD_DATA;
GEF_EGD_DATA MessageEGD;

EGD Data messages are sent from Producer to Consumer on a scheduled basis. A 32-byte header
with the following fields precedes each EGD data message:

Field Description

PDUTypeVersion has a 13 in the low byte and the current version of 1 in the high byte.

RequestID 16-bit number for each ExchangedID incremented by producer

ProducerID TCP/IP addresses of the sender based on EGD config, not actual address

ExchangeID Unique number for each Producer used to identify data, from EGD config

TimeStamp Two 32-bit numbers with seconds and nanoseconds since 1-Jan-1970

Status Message status, 1=Success, others in Table 4-3 in GFK-1541A manual

ConfigSignature For security use, Not implemented yet and must be set to 0

Up to 1400 bytes of PLC or I/O data follows the header. Reading EGD data in a computer is very
simple. All that is required to exchange Ethernet Global Data is to open a socket for UDP Datagrams
and bind it to port "GF". The application uses recvfrom to read (consume) data produced by other
devices or sendto to write (produce) data to other devices.
 SOCKET HostSocket,TargetSocket;
 struct in_addr HostAddress,TargetAddress,FromAddr ess;
 struct sockaddr_in
HostSocketAddress,TargetSocketAddress,FromSocketAdd ress;
 long ByteLength, DataLength, FromLen, TargetID;

 HostSocket = socket(AF_INET, SOCK_DGRAM,0);
 memset(&HostSocketAddress,0,sizeof(HostSocketAddr ess));
 HostSocketAddress.sin_family = AF_INET;
 HostSocketAddress.sin_port = htons(GEF_EGD_UDP_DA TA_PORT);
 bind(HostSocket, &HostSocketAddress, sizeof(HostS ocketAddress));

Computer Communications for Ethernet Global Data.doc 3

 FromLen = sizeof(FromSocketAddress);
 ByteLength
=recvfrom(HostSocket,&MessageEGD,sizeof(MessageEGD) ,0,&FromSocketAddress,
&FromLen);
 DataLength = ByteLength - 32;
 if ((DataLength>0)&&(MessageEGD.PDUTypeVersion==0 x010D)) {
 memcpy(&FromAddress,&MessageEGD.ProducerID,si zeof(DWORD));
 printf("\nReceived %u data bytes from %s Exch ange %u, Request
%u",DataLength,
(char *)inet_ntoa(FromAddress),MessageEGD.ExchangeI D,MessageEGD.RequestID);
 }

Code to write EGD to another TCP/IP Address is just as easy. There are a few extra lines if the target
is specified by name rather than by TCP/IP address. The code is shown in the ReflectEGD.c example
file.
 TargetSocket = socket(AF_INET, SOCK_DGRAM,0);
 TargetID = inet_addr(TargetTCPIPAddressInDottedDe cimalFormat);
// More code is required if remote target specified by name, see
ReflectEGD.c

memcpy(&TargetSocketAddress,&HostSocketAddress,size of(HostSocketAddress));
 memcpy(&TargetSocketAddress.sin_addr,&TargetID,si zeof(long));
// Fill in MessageEGD with Header and DataLength by tes of Data (code not in
ReflectEGD.c)
 MessageEGD. PDUTypeVersion = 0x010D;
 MessageEGD. RequestID++;
 MessageEGD.ProducerID =
inet_addr(HostTCPIPAddressInDottedDecimalFormat);
 MessageEGD.ExchangeID = 1;
 MessageEGD.TimeStampSec = time(NULL);
 MessageEGD. TimeStampNanoSec = 0;
 MessageEGD.Status = 1;
 MessageEGD.ConfigSignature = 0;
 MessageEGD.Reserved = 0;
 Memcpy(MessageEGD.ProductionData, pDataToSend, DataLength);
 ByteLength = DataLength + 32;

sendto(TargetSocket,&MessageEGD,ByteLength,0,&Targe tSocketAddress,sizeof(Ta
rgetSocketAddress));

A Simple Example EGD Program (Separate from CommEGD)

CommEGD code has many features beyond EGD that may make it appear more complex that it really
is. What is needed is a simple working application that shows how to receive and send EGD without
configuration validation and setup details.

The ReflectEGD program below is a sample that accepts EGD messages from any device and sends
them to another TCP/IP address. It acts like a mirror reflecting beams of light, hence the program
name. The program is designed as the simplest example of reading and writing EGD messages
without any configuration or other overhead. It might actually be useful to display what EGD messages
are being sent to a specified PLC if you ran it on a computer set to the same TCP/IP address as the
PLC.

The sample code fragments in the previous section are from the ReflectEGD.c file. You can load this
file into a C compiler editor or any other editor such as NotePad. The comment lines at the start
describe how to run the program to display EGD being sent to your computer by a GE Fanuc PLC.
You can enter another TCP/IP on the command line to resend received EGD to another device.

A Simple EGD Performance Test Program (Also separat e from CommEGD)

Both ReflectEGD and CommEGD are 32-bit console mode programs that lack a graphic interface with
continuous updates. Customers also ask for EGD performance data. StressEGD is a simple program

Computer Communications for Ethernet Global Data.doc 4

to display EGD performance data by sending EGD messages between computers and recording the
minimum and maximum time and messages per minute. The only screen in StressEGD is shown
below:

Before running StressEGD, open a command prompt window on other computers on your network and
start ReflectEGD programs specifying the echo option on the command line: reflectegd echo Record
the computer name or TCP/IP address displayed on each computer. Start the StressEGD program
and click on the Next Exchange line. Enter the other computer TCP/IP address or name in the edit box
after To and the Exchange Period (10 to 3600000) and Byte Length (1 to 1400) edit boxes and click
on the Save button. You can click the Ping button to test communication to the computer address or
name in the To edit box.

StressEGD sends EGD messages to other computers based on the Period. ReflectEGD programs on
other computers echo the same data back and StressEGD displays message turnaround times in the
last column. You can use the Adjust list box to try different message rates: Defined period, Half or
Double the defined period or 0 for as fast as possible. Click the Reset button after adjusting the period
to reset the message Sent Counts and Echo Times at the bottom display.

If you create a GEFComm.ini EGD configuration file (discussed in the next section), the list box at the
upper left contains all devices with defined EGD exchanges. File GEFComm.ini for the screen above
is:

[CPU1]
TCPIP = chomacleod4 ; Computer where StressEGD is r un
Consume1CPU2 = 200,%R100 ; consume from ExchangeID 1, CPU2
Consume1CPU11= 200,%R101 ; Timeout and status locat ion not used
Consume2CPU11 = 200,%R102 ; Need Consume line for e ach exchange
[CPU2]
TCPIP = chomacleod1 ; computer where ReflectEGD was not run
Produce1 = 100,%AI1(64) ; 1 is Producer ExchangeID, 100MS Period
[CPU11]
TCPIP = 3.16.89.33 ; computer where ReflectEGD was running
Produce1 = 100,%AI1(64) ; 1 is Producer ExchangeID for this CPU
Produce2 = 100,%AI100(64) ; Period also 100 MS, 128 byte message

StressEGD lists all exchanges at the bottom with turnaround times for computers running the
ReflectEGD program. It displays "Exchange not active" for PLC's or devices not running ReflectEGD.
The exchange count limit of 1000 is set by GEF_MAX_EXCHANGE_COUNT in the StressEGD.c file

Configuration File for the CommEGD Program

The examples above show how reading and writing EGD data is simple on a computer. The problem
is writing code to handle many exchanges from different devices. Control and VersaPro PLC
programmers have EGD configuration integrated into the product, but this does not help computer
users writing their own custom applications. What is required is a simple text file to define all EGD
exchanges between all PLC's, computers and I/O devices such as the Genius gateways.

The GEFComm.ini text file has been expanded to include plant-wide EGD exchanges. The LMSetup
program has defined plant-wide communications using [Section] names based on a three-character
device type followed by a number, such as "GIO1" or "PLC3". Types are

Computer Communications for Ethernet Global Data.doc 5

CPU A computer with an Ethernet UDP/IP application to exchange EGD

PLC 90-30 CPU364 or 90-70 with CMM742 card configured to exchange EGD

GIO Ethernet to Genius gateway with one or more GEN104 daughter-cards

EIO Ethernet I/O rack configured to send EGD inputs and to receive directed control outputs
The following Key names have been added for EGD and unsolicited CommReq 2010 from PLC's.
ProduceN = PeriodMS,List of %Addresses(Length) of data to send. N is ExchangeID 1 to 9999

ConsumeNSection = TimeoutMS,List of %Addresses(Length) to receive ProduceN in [Section]

Primary = PrimaryPLCSection under backup PLC sections to duplicate I/O exchanges

ReceiveSection = CPUAddress1=PLCAddress1(Length), CPUAddress2=PLCAddress2, etc

GENIX = Genius Config file name where X is from 1 to 4 for local PCIM cards
Number N in the ProduceN is the ExchangeID number that must be unique under each Producer
section. Every section associated with Ethernet devices has a key TCPIP specifying the device
TCP/IP address in dotted decimal or DNS computer name format. This address is used for the
ProducerID when EGD is sent from this device. The Section is the section name of the device
producing the EGD that is being consumed by this section, such as PLC3 or CPU2.

ProduceN and ConsumeNSection key values start with a millisecond Producer Period or Consumer
Timeout. These may be followed by a list of addresses. The list of addresses can be any memory type
in a PLC section. The first address in PLC (and maybe CPU) lists is reserved for the 16-bit exchange
status word. The GIO and EIO sections are limited to %I, %Q, %AI and %AQ while the CPU sections
allow these I/O types plus %M and %R for internal memory. Addresses are generally followed by a
length in bits or words in () parentheses. EGD only transferred byte data, so discrete addresses are
automatically adjusted to start on a byte boundary with a length that is a multiple of 8 bits.

The ProduceM and ConsumeMSection keys should match up across the entire file or the program
displays a warning when the file is loaded. The Address list is required at one side of the exchange,
but is optional at the other side unless addresses have to be changed to avoid overlaps. Generally the
Producer side has the address list and the Consumer list is optional except when the consumer is GIO
or EIO. For directed control to I/O, the GIO or EIO Consumer defines the list while it is optional for the
Producer. For CPU or PLC devices the Consumer list may be shorter than the Producer and portions
of the consumed data can be skipped by adding one or more Skip(ByteCount) fields to the address
list.

The Primary key is placed in backup PLC or CPU sections to identify the primary controller. The I/O
sections, GIO, EIO or others are set to consume directed control messages from the primary
controller. This is used to set up duplicate exchanges to backup controllers. The I/O
producer/consumer lines must still be duplicated. It would be nice to eliminate this, but it would take 2
extra scans on the config file.

Generally lists have discrete data preceding analog or word data, but this is not required. In the
example below, a redundant pair of PLC's are exchanging EGD for synchronization and also
controlling 2 Genius gateways while a computer is receiving both PLC and gateway I/O data.
[PLC3]
TCPIP = chomacleod4 ; use computer names or numbers like 3.1.1.7
Produce1 =50,%R100 ; list from GIO1 Consumer
Produce2 = 50,%R101 ; list from GIO2 Consumer
Consume1GIO1=150,%R102 ; list from GIO1 Producer
Consume1GIO2=150,%R103 ; list from GIO2 Producer
Produce3 = 80,%R103,%R201(200),%M1(512)
Consume3PLC4=200,%R104
GENI1 = MyGENI.cfg ; load config file for local PCI M card
[PLC4]
TCPIP=3.1.1.8

Computer Communications for Ethernet Global Data.doc 6

Primary=PLC3
Produce1 =50,%R100 ; list from GIO1 Consumer
Produce2 = 50,%R101 ; list from GIO2 Consumer
Consume1GIO1=150,%R102 ; list from GIO1 Producer
Consume1GIO2=150,%R103 ; list from GIO2 Producer
Produce3 = 80,%R103,%R401(200),%M513(512)
Consume3PLC3=200,%R104
[CPU1]
TCPIP=3.1.1.2
Consume1GIO1=200
Consume1GIO2=200
Consume3PLC3=250
Consume3PLC4=250
[GIO1]
TCPIP=3.1.1.4
Produce1 =50, %I1(256),%AI1(60)
Consume1PLC3=150,%Q1(128),%AQ1(32)
[GIO2]
TCPIP=3.1.1.5
Produce1= 50,%I257(320),%AI70(24)
Consume2PLC3= 150,Q129(64),%AQ40(16)

The ReceiveSection key has been added to handle unsolicited Ethernet CommReq 2010 in the
future, but it has not been programmed. If the CPUAddress= part is omitted, PLCAddress is used in
the computer.

The GENI (and future PCIF) key defined the configuration file for Genius PCIM cards (and future 90-
30 PIF300 and PIF400 cards) that are installed on the local computer to send or receive EGD.

CommEGD Program Operation

The CommEGD program is configured using the same GEFComm.ini file used for LMSetup and the
GEFComm serial, Genius and Ethernet library. The file defines Producer and Consumer exchanges
and update times for every computer, PLC, I/O drop and Genius gateway on the network. The
program defines internal reference tables with %I, %Q, %AI, %AQ, %R and %M data based on the
highest address used. The user application calls the same gefReadPLCMemory and
gefWritePLCMemory that were defined for the GENIlib library in 1993. The only different is PLC has
been changed to Computer and the first parameter with the PLC number has been dropped.

The CommEGD functions are:
Status = gefReadComputerMemory (SNPMemoryType, Star tAddress, DataLength,
DataArray)
Status = gefWriteComputerMemory (SNPMemoryType, Sta rtAddress, DataLength,
DataArray)
ExchangeCount = gefEGDLoadConfig (DefaultHostTCPIP, MaxExchangeCount)
Status = gefEGDSuspend (fSuspendTransfer)
Status = gefEGDStatus (fWrite, IndexBase0, &Exchang eStatus, nBytes, pText)
Status = gefEGDConfig (fWrite, IndexBase0, &Exchang eConfig, nBytes, pText)
Status=gefEGDMemoryList
(fWrite,&ExchangeConfig,MemoryCount,pMemoryList,nBy tes,pText)

Function parameter definitions are:

SNPMemoryType - SNP Memory Type like 8 for registers has predefined name PLCMemoryTypeR
StartAddress - Starting address for specified memory type, starts at 1
DataLength - Length in 16-bit words or bits for discrete data with MemoryType>PLCMemoryTypeAQ
DataArray - Address for transferred data (ByRef for VB), bit data stored as 1 bit per 16-bit word
DefaultTCPUPHost - Default TCP/IP address to load from config file, Use 0 for current computer
MaxExchangeCount - Maximum number of EGD exchanges on this computer, Use 0 to close
ExchangeCount - Returns the number of defined, active exchanges. Can disable or

Computer Communications for Ethernet Global Data.doc 7

change config
fSuspendTransfer - Call with 1/TRUE to stop transfer to computer memory, 0/FALSE to restart
fWrite - Flag set to 0/FALSE to read data or set to 1/TRUE to write data back (3 may Disable)
IndexBase0 - Index for Exchange data from 0 to ExchangeCount-1
ExchangeStatus - Read message counts and last time stamp or write to reset counts or change
Enable
ExchangeConfig - Can read or change EGD configuration. Can also enumerate all defined
exchanges
nBytes - Maximum number of text bytes returned with starting at pText, Use 0 if text not required
pText - Start of text buffer to return status or config information at text for display, NULL if not needed
MemoryCount - Number of memory segments in the pMemoryList, limit of 100 in PLC exchange
pMemoryList - Array of memory types, addresses and length of data in an EGD exchange message

The gefEGDLoadConfig routine must be called once at the start of a users program to load EGD
config information from the GEFComm.ini file and allocate memory. This routine sets up the separate
thread to handle Ethernet communications. The DefaultHostTCPIP is normally 0 and the
MaxExchangeCount set higher than the number of EGD exchanges for this computer. You should call
the same routine with the second parameter = 0 at the end of your program to close the thread and
unload Ethernet communications.

When gefEGDLoadConfig is first called, it makes three passes through the GEFCom.ini config file.

1. Find section matching default or current computer TCP/IP address or its Primary section if a
backup

2. Save all Consume lines in this section and those in other sections that refer to this section or
Primary

3. Save all Produce lines linked to saved Consume lines

If a Primary line points to another controller, Produce and Consume lines associated with GIO or EIO
from that controller are duplicated for this section. The memory list defined under I/O sections always
take precedence, but controllers may choose to map memory to alternate addresses.

The gefEGDStatus routine is used to read or reset status information for a specified EGD exchange.
The first parameter is set to FALSE/0 to read or TRUE/1 to write back data. Applications may want to
write back status to reset exchange counts or to enable or disable EGD messages. This is like using
Genius I/O CommReq #8 to enable or disable directed control from redundant controllers.

There are several structures defined in the CommEGD.h include file. EGD status data accessed by
the gefEGDStatus routine is:
typedef struct {
 DWORD ProducerTCPIP; // return TCP/IP address for this exchange
 DWORD ExchangeID; // return unique ID for this Pr oducer
 DWORD ExchangeCount; // sent or received, can 0 if fWrite is TRUE
 DWORD ErrorCount; // Timeouts for consumer, other
producer errors
 DWORD TimeStampSec; // EGD time stamp for last mes sage received
 DWORD TimeStampNanoSec;
 long TimeTillTransferEGD; // MilliSec remaining, m inus if
overdue;
 WORD RequestID; // Producer increments when EGD
message sent
 short EnableExchange; // set to 1 to enable, 0 to disable if fWrite
} GEF_EGD_EXCHANGE_STATUS;

The gefEGDConfig and gefEGDMemoryList routines are used to read or write configuration data for
a specified EGD exchange. Configuration data includes the following:
typedef struct {
 short SNPMemoryType; // SNP Memory Type, %AI=10, % I=16, etc

Computer Communications for Ethernet Global Data.doc 8

 short StartAddress; // Addresses start at 1
 short DataLength; // In words or bits if SNPMemor yType
> %AQ
} GEF_PLC_MEMORY_LIST;
typedef struct {
 DWORD ProducerTCPIP; // If equal to computer TCP/I P, it is
producer
 DWORD ExchangeID; // Unique number for each produ cer
from 1 to N
 short DeviceType; // 0=CPU, 1=PLC, 2=GIO, 3=EIO, etc
 short DeviceNumber; // 1 to 9999
 DWORD ConsumerTCPIP; // Set to 0 if this computer is consuming
 DWORD ProducerPeriod; // 10 to 3600000 (1 hour) mi lliseconds
 DWORD ConsumerTimeout; // 10 to 3600000 millisecfo r timeout,
0=none
 short DataByteLength; // configured transfer lengt h, EGD limit 1400
 short MemoryListCount; // same as AddressSegment c ount
 long PLCStatusTypeAddress; // SNP Type in upper, a ddress in
lower
 short DataBytesReceived; // Set when first EGD mes sage
received
} GEF_EGD_EXCHANGE_CONFIG;

You can enumerate all defined exchanges by calling either routine with an IndexBase0 stepping from
0 to 1 less than the ExchangeCount returned by the gefEGDLoadConfig routine.
char Text[4096];
for (Index=0; Index<ExchangeCount; Index++) {
 if (gefEGDExchange(FALSE, Index, &ExchangeConfi g,4096,Text)>0) {
 printf("\nExchange %u = %s",Ind ex, Text);
 }
}

The separate EGD processing thread may be accessing configuration and internal reference table
data at the same time a user application is calling CommEGD routines. This is not normally a problem
when reading tables or writing to word memory that EGD is sending. There may be a very small
chance of conflicts writing to discrete data and there is a much larger chance that writing status or
config data back will conflict with the EGD thread accessing to that same data. To prevent memory
conflicts, you should call the gefEGDSuspend (TRUE) before calling routines to write data. When the
routine returns, the EGD thread has acknowledged that it has stopped accessing internal memory.
Call gefEGDSuspend (FALSE) when you are done to restart EGD transfers.

The gefEGDStatus, gefEGDConfig and gefEGDMemoryList routines give you complete control over
configuring EGD exchanges dynamically similar to Series 90-70 logic driven Dynamic EGD setup
using SvcReq #44. The configuration only applies to the local computer and not to a remote PLC. Note
Genius gateways will accept remote EGD configuration from the computer for a single point of
connect.

Sample User Application Program - HostEGD

A short console mode HostEGD application was developed to demonstrate calls to the CommEGD
routines. To test, you need at least one other system that can produce and consume EGD. If you do
not have a GE Fanuc IC697CMM742 with the Control programmer or IC693CPU364 with VersaPro™,
you can use two computers connected by Ethernet running the HostEGD program.

Create or update the GEFComm.ini file in the same directory as the HostEGD program. Add sections
for each PLC or computer and include the TCPIP line and all Produce and Consume lines under each
section. For PLC sections, Produce lines are ProduceM =
Period,StatusWord,Address(Length),Address(Length),,, For Consume lines, the memory list can be
omitted if it is to be the same as the Produce list. You need to include the ExchangeID and Producer
name and at least the Timeout and StatusWord after the = sign.

Computer Communications for Ethernet Global Data.doc 9

A sample GEFComm.ini exchanging 200 registers between computer and PLC every 100 milliseconds
is:
[CPU1] ; First computer running HostEGD
TCPIP = mycomputername ; computer name or TCP/I P address
Produce1 = 100,R201(200) ; 100 MS period, no sta tus, send from R201
Consume1PLC1 = 300 ; 300 MS timeout, receive R1 (200) set by PLC
[PLC1] ; PLC configured for EGD
TCPIP = 3.1.1.4 ; Address of PLC, can also use PLC DNS name
Produce1 = 100,R400,R1(200) ; 100 MS period, Status =R400, send 200 R'2
Consume1CPU1 = 300,R401 ; 300 MS timeout,status =R401,receive
R201(200)

If you are not able to configure a PLC for EGD, change PLC1 to CPU2 above and the TCPIP address
under the [CPU2] section to the second computer name. You must also drop the R400 and R401
status words as computers use gefEGDStatus rather than the EGD status words used in the PLC.

Run HostEGD on both computers using the same GEFComm.ini file on both. The gefEGDLoadConfig
routine will find the correct section based on the local computer name and set up all EGD exchanges.
Remember the GEFComm.ini file is designed to define all PLC, computer and distributed I/O on the
plant network which eliminates maintaining separate config files for EGD (a Global config for Global
Data).

Starting HostEGD on CPU1 will show 2 exchanges. Enter a 0 or 1 at the command prompt to view
status, config and reference table data for either exchange. Type in any address followed by a length
in () to view any data in reference table format, such as R201(100). To set any data, enter an address
followed by an = sign and 1 or more values, such as R1=1,2,7,4,5,-600 or Q25=1100010101010 to set
one or more bits.

Files included in the CommEGD.zip file are:

File Name Description of file

HostEGD.c Source code for test program with routines to parse input and show reference tables

HostEGD.dsp/dsw HostEGD Project files for Microsoft™ Visual C++™ v6.0 compiler

HostEGD.exe Compiled program. Edit GEFComm.ini to add EGD exchanges & TCPIP addresses

GEFComm.ini Sample communication definition text file, can update with any text editor

CommEGD.doc This document in Microsoft® Word™ format

CommEGD.c Source code for the EGD routines

CommEGD.h Include file with data structures and function prototypes for EGD routines

MyGENI.cfg Sample Genius network config file for Genius gateway

ReflectEGD.c The complete source code for the EGD reflection program discussed on page 2

ReflectEGD.exe Compiled version of the reflector. Comments at start of source tell how to program

StressEGD.c/rc Source code for graphic program to send EGD to ReflectEGD and record times

StressEGD.dsp/dsw StressEGD Project files for Microsoft Visual C++ v6.0 compiler

StressEGD.exe Compiled program. Edit GEFComm.ini to add EGD exchanges & TCPIP addresses

Computer Communications for Ethernet Global Data.doc 10

The current code is most useful in a C/C++ environment where the source code can be linked into the
application. In the future, the CommEGD routines will be linked into the GEFComm.dll with headers
defined as GEFComm.h for C or GEFComm.bas for VisualBasic™. This will allow 32-bit Windows®
applications supporting dll's to use the routines.

Programs call gefReadComputerMemory or gefWriteComputerMemory to access local reference
tables. The routines use PLC type reference tables but it is expected that programs will use the
memory type C structures or Basic user defined types that define element names for every point using
PLC or I/O config tag names. Routines are available to create C and Basic header files from names in
the GEFComm.ini file.

Closing Comments

Note ReflectEGD, StressEGD, CommEGD and HostEGD are not GE Fanuc products. Please contact
your GE Fanuc Sales or Application engineer or local PLC distributor for information on GE Fanuc
PLC products.

